Как работают тормоза в автомобиле: Объяснение

Содержание

Как работают тормоза в автомобиле: Объяснение

Многим водителям наверняка знакома такая ситуация, когда на дорогу неожиданно выбегает какое-нибудь животное, к примеру, кошка, собака, ну и т.д. Согласитесь с нами, достаточно неприятный момент. Ведь у водителя есть всего лишь доли секунды, чтобы отреагировать на данную ситуацию. В этот самый момент большинство из водителей обязательно нажмут на педаль тормоза будучи уверенными в том, что их машина начнет почти мгновенно останавливаться. Но почему мы с вами на все сто процентов уверены в тормозах машины? Хотелось бы знать, как работает тормозная система в автомобиле? Давайте вместе друзья с вами сейчас узнаем, как же эти тормоза используя науку останавливают тяжелую машину.

Наука «останавливаться».

Перед вами друзья парашютный тормоз который снижает скорость и кинетическую энергию, чтобы катапультировавшийся из самолета или с тренажера летчик благополучно приземлился на землю.

Если вы двигаетесь, то это означает, что у вас есть энергия, т.е., если быть точным — кинетическая энергия. Кинетическая энергия это такая энергия, которой обладает определенный объект, поскольку он имеет массу и скорость (скорость в определенном направлении). Чем больше будет масса (то есть, чем тяжелее объект) и чем быстрее вы или объект будет двигаться, тем больше кинетической энергии будет у вас или объекта.

Все это конечно хорошо, но, что делать, если вам вдруг нужно остановиться? Как же перейти от быстрого движения к тому состоянию, чтобы не двигаться вообще. Для этого вам или объекту необходимо избавиться от своей кинетической энергии.

Например, если вы прыгаете находу с высоты из летящего самолета, то лучшим способом потерять энергию для вас будет парашют. Благодаря гигантскому «мешку ткани» который летит вслед за вами, движение замедляется, то есть уменьшается скорость падения, а следовательно парашют помогает вам избавиться от вашей же кинетической энергии.

В результате парашют позволяет вам спокойно и плавно приземлиться на землю целым и невредимым.

Кстати, мощные драгстер-автомобили, которые являются рекордсменами по разгону с места а с ними и спорткары умеющие разгонятся до рекордных скоростей, также используют у себя для остановки парашюты. Но большинство обычных автомобилей, как вы сами знаете, используют для своей остановки и снижения скорости традиционную гидравлическую тормозную систему, которая была изобретена еще в начале 20 века.

Различные виды тормозов для разных видов транспорта

В легковых автомобилях, в грузовиках, в самолетах и в тех же поездах тормоза работают в целом и в принципе одинаково. В нашем мире существует множество и других видов транспорта, которые также обеспечены и оборудованы похожими видами торможения. Тормоза есть как ни странно, даже в ветровых турбинах. Вот краткое сравнение друг с другом некоторых распространенных в мире тормозных систем:

Велосипед

Если вы пользуетесь и катаетесь на велосипеде, то непременно знаете, что разогнавшись вам нечего бояться, так как в нужный момент, когда вы захотите остановиться, вы воспользуетесь тормозом предусмотренном в любом велотранспорте. Обычно для этого вы нажимаете на тормозной рычаг на руле и велосипед начинает снижать скорость, а происходит это за счет того, что металлический трос, идущий от тормозного рычага, тянет за собой небольшие суппорты расположенные непосредственно на колесе, заставляя тем самым толстые резиновые блоки прижиматься конкретно к колесу. В этот момент создается трение между тормозными резиновыми блоками и металлическим ободом колеса. В результате этого трения создается и выделяется тепло, а заодно начинает уменьшаться кинетическая энергия вашего велосипеда. В итоге этого вы безопасно останавливаетесь.

Паровоз

Тормоза на паровозе работают точно так же, как и в автомобиле. На фотографии вы друзья можете лицезреть паровозный тормоз. Он зажимает ведущие колеса локомотива, чтобы замедлить их ход. Но как же все-же поезд останавливается, если на самих колесах нет резиновых шин? Ведь для остановки необходимо трение в том числе и с дорожной поверхностью?

Все очень просто. Так как локомотив имеет огромную массу а его колеса не имеют резины, то это трение у железнодорожного локомотива создается именно из-за огромного веса, который непосредственно давит на колеса, которые прижаты к металлическим рельсам. В результате такого трения металлических колес с металлическими рельсами образуется и выделяется большое количество тепла, которое и снижает кинетическую энергию этого движущегося локомотива.

Мотоцикл

Мотоциклы (мотобайки) обычно имеют в своей конструкции дисковые тормоза, которые содержат внутри себя тормозные диски, суппорт и те же тормозные колодки. Тормозной диск, как правило, имеет по всей площади отверстия (или пазы). Принцип работы тормозов в мотоцикле достаточно прост, то есть: — сама тормозная колодка зажимается с помощью тросика, который, как и на велосипеде, может подходить к рулевому колесу или непосредственно к ножной педали. Как только мотоциклист нажимает на педаль тормоза или на тормозной рычаг, то тросик тут же начинает прижимать тормозные колодки к тормозному диску. Отверстия в тормозном диске помогают рассеивать выделяемое тепло при трении.

Самолет

В самолетах тормоза установлены непосредственно внутри самих колес. Это помогает пилоту остановить самолет на взлетно-посадочной полосе. Также в авиатехнике могут использоваться и воздушные тормоза, которые увеличивают сопротивление воздуха, что в итоге и замедляет самолет во время его полета. А еще самолет может тормозить и за счет обратной тяги своих двигателей, если пилот включит так называемый реверс.

Ветровая турбина

Как мы уже выше вам сказали, ветровые турбины тоже имеют у себя внутри тормозную систему. Она им необходима чтобы предотвращать и тормозить слишком быстрое вращение роторов (пропеллеров). У большинства ветровых турбин имеется прибор анемометр, который измеряет скорость ветра. Если скорость ветра поднимается выше безопасного уровня, то тут же автоматически активируется тормоз, который и приводит к замедлению вращения пропеллеров либо к их полной остановке.

Ну а высокая скорость ветра означают следующее, что при возможности от этих ветровых турбин можно было бы получать намного больше необходимой энергии, чем получают на сегодня. Но безопасность всегда бывает главнее.

Более детальный взгляд на автомобильные тормозные системы

Автомобильные тормоза на своей ранней стадии были удивительно примитивны по сегодняшним современным меркам. Вот перед вами друзья очень простая система с трением изобретенная и созданная американцем Джоном Ставарцем в 1910 году.

Когда вы нажимаете на рычаг тормоза (обозначен на картинке желтым цветом), то под заднее колесо этого транспорта (обозначено коричневым цветом) заезжает огромная тормозная колодка (синего цвета).

По сути автомобиль как-бы садится на колодку-башмак зубья которого сцепляются непосредственно с дорожной поверхностью, в результате чего машина начинает замедляться и в конечном итоге остановится.

Большинство автомобилей имеют два или три различных типа тормозных систем. Обратите ваше внимание друзья на передние колеса своей машины. Сразу за колесным диском вы увидите тормозные диски. Когда водитель нажимает на педаль тормоза, то с двух сторон тормозного диска начинают тут же зажиматься тормозные колодки из износостойкого материала.

В результате трения колодок с тормозными дисками начинает образовываться и выделяться тепло, а заодно снижается кинетическая энергия самого автомобиля, который в итоге всего этого начинает замедление. Как вы видите, это тот же самый принцип как и в мотоциклах и даже в велосипедных тормозах.

У некоторых марок автомобилей дисковые тормоза стоят и на задних колесах. Но у многих автомобилей до сих пор на задних колесах по-прежнему установлены барабанные тормоза, которые работают несколько иначе, чем дисковые тормоза. Вместо самого диска в таких тормозах используется тормозной барабан внутри которого, в полой области, установлены тормозные колодки, которые с помощью пружин и тормозных цилиндров при нажатии водителем на педаль тормоза, начинают прижиматься к самой поверхности барабана.

Ручной тормоз автомобиля тормозит и действует на задние колеса. Этот ручной тормоз активируется с помощью рычага расположенного внутри машины. Правда по сравнению с нажатием на педаль тормоза этот ручной тормоз менее эффективен и более слабее.

У быстро ускоряющего автомобиля имеется масса энергии и когда вы активируете тормоза (неважно какие,- барабанные, дисковые или ручной тормоз), то эта энергия в результате трения тормозных колодок с барабанами или тормозными дисками превращается в тепло.

Естественно, что из-за сильного трения барабаны и тормозные диски могут нагреваться до 500 °C и более! Вот почему барабаны или диски должны быть сделаны из таких крепких материалов, которые не будут плавиться при высоких температурах. Например, для изготовления тормозных дисков, барабанов и тормозных колодок идеально подходят дорогие сплавы металлов, а также композиты или керамика.

Как работают тормоза в автомобиле

Перед вами друзья картинка описание: -Когда ваша нога нажимает на педаль тормоза, то тормозная жидкость в тормозной системе выжимается и направляется из узкого цилиндра в более широкий цилиндр. Такая система известна многим под названием, как гидравлическая система. Это позволяет значительно увеличить силу вашего тормозного усилия.

Теория.

Представьте себе следующее, сколько вам понадобилось бы личных сил, чтобы остановить например, быстроходную машину. Простое нажатие на педаль тормоза не могло бы создать той достаточной силы, чтобы активировать сразу все четыре тормоза таким образом, чтобы вы смогли в быстром темпе спокойно остановить свой автомобиль. Вот почему тормоза используют у себя гидравлику, а именно,- систему заполненных тормозной жидкостью трубок которые и увеличивают ваше тормозное усилие. Также, благодаря этой гидравлике тормозные усилия могут передаваться легко из одного места в другое за короткий промежуток (срок) времени.

Когда вы нажимаете на педаль тормоза, то ваша нога, по сути в это время, перемещает конкретный рычаг, который заставляет сдвинуть поршень в длинном узком тормозном цилиндре (главный тормозной цилиндр), который в свою очередь начинает далее двигать гидравлическую жидкость (тормозную жидкость) в сторону узкой трубки, которая расположена на конце тормозного цилиндра.

К этой трубке подключены, как правило, такого же диаметра другие трубки идущие на каждый тормоз автомобиля. Далее тормозная жидкость по узким трубкам попадает непосредственно в более объемные цилиндры, которые расположены на колесах.

Поскольку тормозные цилиндры распологающиеся на каждом колесе намного больше, чем сам цилиндр, который расположен в тормозной системе сразу после педали тормоза, то сила, которую вы изначально применили к педали тормоза значительно увеличивается. В результате чего эта самая сила и начинает сжимать тормозные колодки в каждом отдельно взятом тормозе колеса.

На практике.

  1. 2. Когда педаль движется вниз, то она толкает рычаг который соединен с поршнем главного тормозного цилиндра.
  1. 3. Рычаг толкает поршень (синий на картинке) и направляет его в узкий цилиндр, который заполнен гидравлической тормозной жидкостью (обозначена красным цветом). Когда поршень перемещается внутри цилиндра, то он начинает сжимать тормозную жидкость и толкает ее в узкое отверстие, которое расположено в конце цилиндра к которому подсоединена трубка. Это происходит примерно так же, как ручной насос выжимает и направляет воздух из цилиндра в тонкий шланг.
  1. 4. В результате образовавшегося давления тормозная жидкость попадает в длинную тормозную магистраль, состоящую из тормозных трубок, которые как-раз подходят к каждому колесу. В результате такого нагнетенного давления главным тормозным цилиндром в систему, тормозная жидкость в конечном итоге достигает каждого колеса.
  1. 5. Далее жидкость под давлением попадает в тормозные цилиндры расположенные в колесах, которые имеют сами по-себе больший размер, чем главный тормозной цилиндр (цилиндр в колесе обозначен, синим цветом).
  1. 6. Когда жидкость попадает в тормозной цилиндр имеющий больший объем по сравнению с главным тормозным цилиндром, то в этот момент сильно увеличивается тормозное усилие, и происходит это как-раз из-за разницы объемов цилиндров в тормозной системе.
  1. 7. В результате увеличенного давления жидкости в системе, поршень в тормозном цилиндре колеса начинает зажимать тормозную колодку прижимая тем самым ее к тормозному диску / барабану.
  1. 8. В результате трения тормозной колодки и тормозного диска начинается необходимое замедление колесного диска, что в конечном итоге и останавливает машину.
Читать статью  Какие тормоза лучше: дисковые или барабанные?

Наш простой пример показывает основной принцип работы такой и подобной гидравлической тормозной системы. Ну а на практике все бывает немного сложнее.

На самом деле надо сказать следующее, что педаль тормоза фактически управляет четырьмя отдельными гидравлическими тормозными линиями идущими непосредственно на все четыре колеса. На нашем же примере мы показываем вам друзья принцип работы тормозов лишь всего на одном колесе автомобиля (вы знаете, что их четыре).

Для безопасности во всех автомобилях используется, как правило, два отдельных контура гидравлических тормозов. Это необходимо на тот случай, если из-за какой-то неисправности вдруг выйдет из строя один из двух тормозных контуров. В этом случае второй контур всей тормозной системы будет по-прежнему функционировать.

Кто изобрел гидравлические тормоза?

Гидравлические тормоза изобрел Малькольм Лугхед из Детройта, штат Мичиган, США, произошло это в 1919 году. Выше вы можете друзья видеть его улучшенную конструкцию гидравлической тормозной системы — середина 1920-х годов.

Эта система использует импульс (движущую силу) транспортного средства, чтобы обеспечить необходимое тормозное усилие для остановки машины. Эта сила толкает гидравлический поршень в цилиндре. Это первый в мире тормоз с электроприводом. То есть принцип работы такой, при нажатии на педаль тормоза поршень в цилиндре начинает двигаться не только за счет силы нажатия педали, но и благодаря движущейся силе самого транспорта.

Лугхэд и его брат Аллан были как говорится, пионерами в авиастроении. Они в свое время основали компанию под названием «Лугхед», известную как авиационное производственное предприятие.

От педали до колеса: что влияет на эффективность тормозов?

Если задать такой вопрос, большинство ответит: колодки. Да, с этим трудно не согласиться. Но ведь тормоза – это целая система со множеством деталей и компонентов, и в её работе важна каждая мелочь. Давайте пройдём весь путь от педали тормоза до колодки с диском и посмотрим, что тут может работать не так, как положено.

Чтобы разобраться в тонкостях работы тормозов, мы обратились за профессиональным мнением к специалистам немецкого бренда Textar (принадлежит TMD Friction), который совершенно справедливо считается одним из реальных экспертов-практиков в этой области. Компания поставляет тормозные колодки и накладки Textar на конвейеры большинства автомобильных заводов мира и сама разрабатывает фрикционные материалы — таких поставщиков на европейском рынке всего четыре компании. Уверены, что в Textar знают о тормозах всё. Итак, поехали!

Взгляд изнутри

Театр, как известно, начинается с вешалки, а тормоза, как ни смешно это звучит, с педали. Казалось бы: что с ней может быть не так? В принципе педаль ломается редко. Очень редко. Но некоторые проблемы принести может.

Например, не забываем, что скоро наступит зима. У тех, кто не любит отряхивать ноги, утром в холодной машине на педали тормоза образуется наледь. И в ответственный момент нога с педали может соскользнуть. А это чревато последствиями. Кому-то покажется, что это не очень серьёзно, но смеем вас уверить: всё, что может случиться, когда-нибудь случается. Так что на всякий случай, садясь утром в холодную машину, убедитесь, что педали не скользкие. И не злоупотребляйте накладками «под алюминий», которые не всегда удобнее стандартной резинки.

Ну а теперь перейдём к более серьёзным факторам, влияющим на эффективность торможения.

В салоне таких не слишком много, но они есть. Причём иногда они кажутся незначительными, но в тормозной системе ничего незначительного просто нет.

Итак, следующая деталь интерьера – это рычаг стояночного тормоза. Или педаль (а иногда ещё и кнопка). Теоретически рабочая и стояночная – это немного разные системы, но по факту машина так устроена, что несвязанных между собой систем у неё практически нет. И исправность стояночного тормоза заметно влияет на то, как ведёт себя рабочий тормоз. Всё дело в зазоре колодок задних тормозов, которые обычно приводятся в действие стояночным тормозом (хотя есть автомобили, у которых стояночный тормоз имеет привод на переднюю ось или он вообще трансмиссионный). Особенно критично к работе задних колодок относятся барабанные тормоза, у которой система самоподвода не так эффективна, как у дисковых тормозов.

Тут ситуация простая: если привод стояночного тормоза (который обычно тросовый) неисправен, задние колодки могут клинить и слишком быстро изнашиваться. Кроме того, при этом будет перегреваться тормозной барабан (или диск – в зависимости от конструкции), что приведёт к его короблению, а в запущенном случае будет постоянно перегреваться и ступица с подшипником, что сильно снижает его ресурс.

Трос со временем перестать свободно ходить в кожухе. За этим надо следить. Кроме того, он может ржаветь, а зимой – и замерзать, если в его кожухе копится влага. У некоторых автомобилей это вообще типичная неисправность (например, у Опеля Мокка, трос ручника которого около колеса имеет неприятный изгиб, в котором всегда собирается вода). В этом случае тоже возможен клин колодок и быстрый их износ.

В общем, не стоит недооценивать роль стояночного тормоза. Ему тоже нужны и забота, и периодическая профилактика.

В салоне больше ничего из тормозной системы мы не увидим, поэтому откроем капот.

От ГТЦ до ABS

Были такие времена, когда каждый уважающий себя автолюбитель знал, что такое главный тормозной цилиндр (он же ГТЦ). Это такое устройство, которое преобразует движение педали в давление тормозной жидкости. Раньше, было дело, ГТЦ довольно часто выходили из строя. Причины были разными: и тормозные жидкости были не лучшего качества, и само изготовление ГТЦ для Жигулей и Москвичей хромало, и резинотехнические изделия (читай – манжеты, сальники) были не такими долговечными. Сейчас ГТЦ подводит заметно реже, но иногда он всё же способен подкинуть неприятностей. Обычно протекают как раз резинки. А ещё он может страдать от коррозии. Симптомы поломки могут быть разными, но чаще всего при неисправности ГТЦ проваливается педаль тормоза.

Продлить жизнь главному тормозному цилиндру достаточно просто – нужно следить за состоянием тормозной жидкости.

Дело в том, что тормозная жидкость очень гигроскопична: легко впитывает в себя влагу из воздуха. И от этой воды коррозия элементов тормозной системы ускоряется.

Кроме того, меняются характеристики самой жидкости. В первую очередь, температура её кипения. И вот тут последствия могут быть прямо-таки катастрофическими. Наверняка вы знаете, как всё происходит, но всё-таки повторим. Как известно, в момент торможения колодки и диск очень сильно нагреваются и нагревают суппорт и тормозную жидкость. Свежая тормозная жидкость этот нагрев переживает легко. А вот если в ней есть вода, то произойдёт следующее: вода стремительно закипает и в жидкости образуется паровая (газовая) пробка. В этом случае жидкость теряет необходимую для работы особенность – несжимаемость. Педаль проваливается в пол, а колодки диск не держат… То есть тормоза просто пропадают. Надо ли говорить, что это может быть смертельно опасно? Поэтому состояние тормозной жидкости – это важнейший фактор надёжной работы тормозов. Нужно не только следить за уровнем тормозной жидкости (падение которого может говорить об её утечках), но и за возрастом. Менять жидкость нужно раз в два года. Тогда и тормоза не пропадут, и детали тормозной магистрали не будут страдать от ускоренной коррозии.

Следующая важная деталь системы под капотом – вакуумный усилитель. Как ни странно, но первый признак его неисправности на эффективность торможения почти не влияет, а проявляется следующим образом: при торможении на холостых оборотах мотор либо глохнет, либо пытается это сделать. Причина простая: принцип работы усилителя построен на разрежении во впускном коллекторе, и если вакуумник теряет герметичность (начинает пропускать диафрагма между атмосферным и вакуумным отделами), во впуск попадает избыток воздуха, отчего мотор может глохнуть. Ну а дальше становится заметным рост усилия на педали тормоза. Рост настолько заметный, что на педаль хочется давить обеими ногами, а остановочного пути всё равно не хватает.

Диагностикой вакуумного усилителя должны заниматься специалисты. Если при нажатии на тормоз чувствуете, что меняются обороты коленвала, а педаль тормоза теряет свою отзывчивость – срочно в сервис. И скорее всего, будет виноват не сам усилитель, а вакуумный патрубок, который где-то подсасывает воздух.

Последняя заметная под капотом деталь тормозной системы – блок ABS. Правильно его будет назвать гидроблоком, это всё-таки исполнительный элемент системы: в нём стоят электромагнитные клапаны, гидроаккумуляторы и насос. А управляет им электронный блок. Главное, помните: если вдруг на панели приборов загорается и не гаснет лампочка ABS, систему нужно проверять в сервисе. К чести блока отметим, что сам он из строя выходит редко, и причина поломки антиблокировочной системы обычно кроется в датчиках ABS, которые стоят на колёсах (на ступицах) и в их проводке. Но разбираться в этом должен специалист. А вот посмотреть автомобиль снизу и что-то там разглядеть можно и самому.

С помощью портативного тестера Textar можно быстро определить неисправные сегменты датчика ABS, не прибегая к сложной процедуре комплексной диагностики узлов антиблокировочной системы – достаточно наложить тестер на тормозной диск

Взгляд снизу

Чаще всего под днищем автомобиля в тормозной системе подводят магистрали –тормозные трубки и шланги. Неполадки у них довольно однообразные – они могут только протекать. Трубки текут из-за коррозии и по завальцовке, шланги могут лопаться. Как за ними следить?

Тут правило простое: при каждом ТО нужно их внимательно осматривать. Они не должны «потеть» тормозной жидкостью по соединениям и тем более – по всей длине. Если из-за коррозии на возрастной машине тормозные трубки выглядят несвежими, их нужно срочно менять.

Шланги не должны иметь вздутий и не должны быть «задубевшими». Если кажется, что на шланге растёт «грыжа», его придётся срочно заменить.

Читать статью  Что делать, если во время движения автомобиля отказали тормоза

На машинах без ABS есть регулятор тормозных усилий. На жаргоне его довольно часто называют «колдуном». По сути, это клапан, который изменяет подачу тормозной жидкости в задние рабочие тормозные цилиндры, что снижает вероятность блокировки задних тормозов. Сейчас эти функции выполняет именно ABS, но если машина далеко не новая и этой системы не имеет, то «колдун» в ней есть обязательно.

Теоретически регулятор нужно проверять каждое ТО. Но кто это делает? Иногда его просто удаляют. А зря. Без него передняя и задняя оси тормозят одновременно и с одинаковым усилием, что провоцирует занос. То же самое происходит и при неисправном регуляторе. Кроме того, он может при торможении тянуть автомобиль в сторону или слишком рано блокировать колесо.

Как я уже говорил, «колдун» иногда требует регулировки. Способы регулировки этого устройства на автомобилях отличаются, поэтому лучше поискать инструкцию для конкретной машины. Большинству читателей это уже не так интересно – почти на всех автомобилях вместо «колдуна» стоит ABS. Поэтому просто напоминаем, что такая деталь есть и она очень важна.

Неисправности тормозных суппортов встречаются, к сожалению, довольно часто. Типичная их неисправность – закисание.

Да, есть автомобили, в которых суппорты закисают чаще, чем на других, но всё-таки основная причина закисания – отсутствие должного обслуживания. Грустно, но колодки у нас обычно меняют самым простым способом: вытащил старые – поставил новые. А как при этом работает суппорт, интересует не всех (хотя при этом для установки новой колодки иногда приходится помучиться, чтобы вернуть прикипевший поршень в исходную позицию). Нужно усвоить простое правило: любая замена колодок должна сопровождаться проверкой и обслуживанием суппортов. Сейчас в продаже доступны качественные смазки, а также все необходимые ремкомплекты для восстановления суппортов.

Клин суппорта – вещь неприятная. Вечно перегретые колодки, поведённый и бьющий в руль диск, неравномерное торможение, неадекватное поведение антиблокировочной системы и связанной с ней системы курсовой (динамической) стабилизации, перегрев и кипение тормозной жидкости, разрушение ступичного подшипника – это целый букет неприятностей, который может быть вызван заклинившим суппортом.

Глазами его увидеть сложно, но можно заметить по износу колодок или диска. Правда, для этого нужен хотя бы минимальный опыт. Гораздо проще после поездки потрогать рукой диск колеса: если он ненормально горячий, то суппорт, скорее всего, заклинил. Кроме того, не отходящие от тормозного диска колодки издают скрежет (в ряде случае на раннем этапе особенно заметный при движении задним ходом). Ещё можно заметить рост расхода топлива, который спровоцирован постоянно заторможенным колесом.

Тут совет простой: нельзя экономить на обслуживании суппорта. Сейчас в продаже есть все необходимые для этого расходные материалы и запчасти, так что всё зависит только от вас.

Ну и, конечно же, очень важно состояние самих дисков и колодок. Причём они могут не только изнашиваться. Диск может «повести», колодки – замаслиться или подгореть, и всё это сильно снижает их фрикционные свойства. А значит, и безопасность при вождении.

Износ дисков и колодок нужно контролировать при каждом ТО. И ни в коем случае нельзя ставить то, что подходит «на глаз» или «после обработки напильником». Тормозные системы рассчитывают специалисты, поэтому любое вмешательство может привести к очень неприятным последствиям. При этом совсем не обязательно использовать оригинальные компоненты: есть очень качественные аналоги, которые стоят дешевле, а тормозят иногда даже лучше. Главное, уметь пользоваться каталогами и выбирать именно то, что подходит вашей машине.

Что ещё влияет на эффективность тормозов?

Все компоненты автомобиля тесно связаны друг с другом, поэтому нормальная работа тормозной системы невозможна с неисправной ходовой частью.

Вытекшие амортизаторы позволяют колесу в буквальном смысле скакать по дороге. Отсюда недостаточное сцепление с дорогой и рост тормозного пути. Не зря в хороших сервисах перед проверкой на стенде тормозных сил ставят машину на вибростенд и проверяют амортизаторы.

Очень сильно на торможение влияет угол развала. Если он не выставляется из-за износа сайлентблоков или самих рычагов, шина не сможет работать в полную силу из-за неправильного пятна контакта. Люфты в ходовой части также влияют на торможение.

И, наконец, шины. Тут всё просто: если они не обеспечивают нужного сцепления с дорогой, никакие колодки уже не помогут. В лучшем случае будет постоянно срабатывать ABS. Кстати, напомню: у шин есть не только износ, но и возраст. Российский ГОСТ 4754-97 указывает предельный срок эксплуатации легковых шин в пять лет, хотя некоторые производители настаивают на более длительном сроке службы своей продукции. Тем не менее старые шины в любом случае теряют свои свойства и нормально работать не могут, даже если хорошо выглядят.

Что делать?

Любое вождение в первую очередь должно быть безопасным. Для этого все основные системы автомобиля должны быть исправны. Важно, что на эффективность тормозов влияют и другие системы машины, и забывать об этом нельзя. Но самое существенное – это детали и расходные материалы, необходимые для поддержки тормозов в рабочем состоянии. На них экономить нельзя, нужно выбирать лучшее. И что не менее важно – подходящее именно вашему автомобилю. Сделать это не так уж сложно: можно воспользоваться каталогом или задать вопрос непосредственно продавцу или производителю необходимых компонентов и расходников. Возможность быстро остановиться спасает жизнь чаще, чем возможность быстро разогнаться, так что экономить на тормозах не стоит.

Тормозная система автомобиля, устройство, принцип работы

Тормозная система автомобиля входит в число механизмов, обеспечивающих безопасность движения.

Основной задачей ее является обеспечение снижения скорости движения вплоть до полной остановки авто путем воздействия на его колеса. Тормозные механизмы на транспортных средствах начали использоваться задолго до появления авто. Поначалу они были примитивными, но все же позволяли снизить вращение колес.

Появившиеся первые машины сразу же оснащались данными механизмами. С развитием транспортных средств развивались и системы снижения их скорости.

Классификация тормозных систем автомобиля

Тормозная система автомобиля состоит из нескольких видов механизмов, каждый из которых выполняет определенные функции.

Одни из них взаимосвязаны между собой, другие могут выполнять несколько функций одновременно.

Но в целом, тормозная система включает в себя такие их виды:

  • Рабочий механизм;
  • Стояночный;
  • Запасной;
  • Вспомогательные.

Рабочий тормоз является основным.

Именно при помощи него осуществляется замедление движения вплоть до полной остановки во время движения.

Управляется он за счет педали, установленной в салоне. Нажимая на нее ногой с разным усилием, водитель регулирует скорость замедления автомобиля.

Для исключения повышения оборотов силовой установки с одновременным замедлением, управление педалями акселератора и тормоза осуществляется одной ногой — правой. То есть, водитель либо управляет мотором, либо тормозами.

Предназначен для обездвиживания автомобиля во время стоянки и предотвращения самовольного его передвижения.

Организована работа этого типа тормозов так, что при стоянке водитель блокирует вращение колес.

Для этого также можно задействовать трансмиссию автомобиля (включенная передача не дает свободно вращаться колесам), но при постановке машины под уклоном трансмиссия не всегда может удержать автомобиль.

Используя же трансмиссию в паре со стояночным тормозом, можно достаточно эффективно обездвижить автомобиль, особенно если ручник послаблен и «не держит» автомобиль.

Дополнительно ручной тормоз является вспомогательным средством при начале движения на подъем.

Поскольку водитель не может одновременно управлять двумя педалями – газом и тормозом, то высока вероятность, что при попытке тронуться с места на подъем автомобиль откатиться назад.

В случае же использования ручника, машину можно удерживать, пока двигатель не сможет сдвинуть авто с места, а после тормоз отпустить, тем самым исключив вероятность отката назад.

Реализуется далеко не на всех автомобилях. Предназначен он для обеспечения торможения автомобиля в случае отказа рабочего механизма.

Может быть реализован как отдельная автономная система, воздействующая на тормозные механизмы колес, или же запасной тормоз может быть частью контура рабочей системы.

Зачастую этот тип на легковые авто не устанавливается, а его роль выполняется стояночный тормоз.

Встречаются на грузовых автомобилях и позволяют разгрузить рабочий тормоз при движении на затяжных спусках.

Также к вспомогательным механизмам относятся контуры системы, отвечающие за срабатывание тормозных механизмов прицепов.

Виды тормозных систем

Всего на автомобилях использовалось четыре вида тормозных систем, отличающиеся между собой по принципу действия.

Некоторые из них на автотранспорте уже не применяются, а некоторые были выбраны, как приоритетные.

Итак, на авто применялись такие виды тормозов:

  • Ленточные;
  • Механические;
  • Гидравлические;
  • Пневматические.

Ленточные тормоза использовались на первых авто и давно не применяются из-за слабой эффективности и требуемых значительных усилий от водителя, поэтому подробно их рассматривать не будем.

И хотя каждый вид тормозной системы включает в себя несколько типов устройств, основным из них является рабочий тормоз.

Состоит он из двух основных составляющих – привода и исполнительных механизмов, но об этом чуть позже.

А пока рассмотрим виды тормозных систем.

Механический тормоз

Механические тормоза стали применяться с появлением барабанных тормозных механизмов, устанавливаемых между колесом и его осью.

Состоял такой тип тормозов из механизмов, включавших в себя:

  1. Тормозной барабан;
  2. Колодки;
  3. Кулачковый вал и пружины, устанавливаемых на каждую ось колеса;
  4. Механизма управления, состоящего из системы тросиков и тяг.

Водитель при надобности воздействовал на механизм управления. Его усилие посредством тяг и тросиков передавалось на кулачковый вал.

Этот вал проворачивался и начинал разжимать колодки, заставляя их прижиматься к барабану. Возникающее трение замедляло вращение колеса.

Как рабочий тормоз такой тип привода уже не применяется, разве что в качестве стояночного тормоза он еще используется, но только на авто, оснащенных барабанными механизмами хотя бы на одной оси.

С пневматическим приводом

Последний тип привода, используемый на автотранспорте – пневматический, нашел большее применение на грузовых авто.

Работы такого типа идентичен гидравлическому, но в качестве рабочего элемента выступает сжатый воздух.

Краткая конструкция системы такова: имеются те же барабанные тормозные механизмы с кулачковым валом. Но соединен этот вал с рабочей тормозной камерой мембранного типа.

К этой камере подходят магистрали подачи воздуха. Давление воздуха обеспечивается компрессором и под давлением он сохраняется в ресиверах.

Управление механизмом осуществляется тормозным краном.

  • Водитель посредством педали открывает тормозным краном магистрали подачи воздуха.
  • Сжатый воздух попадает в рабочие камеры мембранного типа.
  • Мембрана соединена штоком с механизмом поворота кулачкового вала.
  • Сжатый воздух давит на мембрану, та отклоняется и толкает шток, который воздействует на механизм и вал проворачивается, разжимая колодки.

Тормоза с гидравлическим приводом

В легковых автомобилях распространение получил гидравлический тип привода.

В целом рабочий тормоз состоит из пяти элементов, цепь расположения которых выглядит так:

  • Педаль;
  • Усилитель (вакуумный);
  • Главный тормозной цилиндр;
  • Трубопроводы;
  • Рабочие цилиндры (входящие в конструкцию исполнительных механизмов);

В основу работы всей этой системы положена такое свойство жидкости, как отсутствие изменения объема при создании давления на нее (она не сжимается).

Благодаря этому и существует возможность использования жидкости в качестве элемента для передачи усилия.

Принцип работы такой системы очень прост: водитель прикладывает усилие, нажимая на педаль, а имеющийся в конструкции усилитель повышает его.

Далее усилие передается на поршни главного цилиндра. Те, перемещаясь, создают давление на жидкость, из-за чего она выдавливается из цилиндра, и по трубопроводам подается на рабочие цилиндры.

Читать статью  Тормозная система Урала: устройство, принцип работы, регулировка

Поршни рабочих механизмов от полученного воздействия жидкости перемещаются, обеспечивая срабатывание рабочего механизма.

У барабанного механизма имеется два поршня рабочего цилиндра, которые взаимодействуют с колодками.

У дисковых тормозов в суппорте установлен только один рабочий цилиндр с поршнем. Но сам суппорт может перемещаться по своим осям крепления.

У этого механизма тормозной диск располагается между двух колодок, установленных в суппорте.

Поршень при создании давления на него прижимает только одну колодку к диску, вторая же прижимается суппортом, который смещается при давлении поршня в колодку и диск.

Данный тип привода сейчас оснащается дополнительными механизмами и системами, такими как вакуумный усилитель, облегчающих водителю создание усилие на жидкость, а такжеABS система, которая исключает полную блокировку колес при торможении, что не дает авто пойти юзом и значительно уменьшает тормозной путь.

При отпускании педали, установленные в главном цилиндре пружины, возвращают поршни в начальное положение, что приводит к сбросу давления в системе, и возврат рабочих поршней в исходную позицию.

Контуры тормозной системы

У гидравлического и пневматического типа тормозов существует такое понятие, как контуры.

Контур – это привод определенного количества тормозных механизмов без взаимодействия с остальными механизмами.

То есть, контур обеспечивает срабатывание тормозных механизмов только тех колес, к которым идет привод в рамках этого же контура.

Сейчас каждое авто оснащается как минимум двухконтурной системой тормозов.

Делаются контуры для того, чтобы обеспечить срабатывание тормозов даже при отказе одного из них, поскольку между собой они не взаимодействуют.

Как не трудно догадаться, это как минимум в два раза повышает безопасность движения.

Для примера рассмотрим две ситуации.

Машина не имеет контуров и весь привод объединен в один.

При пробое магистрали, рабочий элемент (жидкость, воздух) травит, не обеспечивая создание нужного давления для срабатывания тормозных механизмов, авто практически лишается тормозов.

У машины имеется двухконтурная система.

В этом случае, каждый контур обеспечивает привод двух механизмов, при пробое одного из них, второй продолжает работать в обычном режиме, поскольку он независим от другого контура – тормозная система сохраняет работоспособность, но только двух колес, общая эффективность тормозов падает, но они все же работают.

Как правило в один контур зацикливаются переднее левое колесо с задним правым и переднее правое колесо с задним левым, так называемое диагональное подключение.

Но существуют тормозные системы и с параллельным подключением.

Барабанные и дисковые исполнительные механизмы

Основная работа при торможении лежит на исполнительных механизмах, ведь именно они обеспечивают замедление вращения колеса.

В основу их работы положена сила трения, поэтому все тормозные механизмы на авто – фрикционного типа.

На автомобилях распространение получили два типа таких механизмов – барабанные и дисковые.

Каждый из них имеет свои конструктивные особенности, преимущества и недостатки.

Примечательно, что комбинирование их вполне приемлемо. Так, у многих авто все механизмы могут быть либо только барабанными (обычно на грузовиках), или только дисковыми (многие легковые авто).

Но также встречается и их комбинация – на передних колесах устанавливаются дисковые, а на задних – барабанные механизмы.

Тормозной механизм дискового типа.

Сейчас такой механизм все чаще используется, благодаря ряду преимуществ перед барабанным типом.

Конструктивно он состоит из нескольких элементов:

Диск выступает одной из фрикционных частей механизма и используется он для создания трения при торможении. Закреплен он на ступице и вращается с идентичной колесу скоростью.

Колодки – вторая фрикционная составляющая. За счет прижима их к диску, между этими элементами создается трение, которое обеспечивает снижение скорости вращения диска, а вместе с ним и колеса.

Для повышения силы трения, на колодках имеются специальные фрикционные накладки.

В конструкцию суппорта входит рабочий цилиндр привода. Именно эта составляющая обеспечивает прижим колодок.

Конструкции его бывают разные — как однопоршневая (наиболее распространена), так и двух двухпоршневая.

Выглядит конструкция этого механизма так: над диском закрепляется суппорт с поршнями, при этом рабочие поршни (один или два) располагаются перпендикулярно боковым поверхностям этого диска.

Между суппортом и двумя боковыми (рабочими) поверхностями диска помещены колодки. В расторможенном состоянии, между фрикционными составляющими имеется зазор, поэтому колодки не мешают вращаться диску.

Теперь немного о том, как срабатывают механизмы с однопоршневым и двухпоршневым суппортами.

В первом случае суппорт может смещаться по направляющим, что и позволяет одновременно прижимать обе колодки.

Действует это так: при возрастании давления в рабочем цилиндре, поршень выходит и начинает прижимать колодку. При этом создается обратное усилие, которое перемещает суппорт по направляющим.

Смещаясь, он корпусом начинает прижимать вторую колодку. В результате происходит выравнивание усилия прижима колодок с обеих сторон диска.

В двухпоршневом же суппорте, его перемещение не предусмотрено, поскольку каждую колодку прижимает свой поршень.

Устройство и работа барабанного тормозного механизма.

Конструкция барабанного исполнительного механизма отличается от дискового, причем кардинально.

Устройство его включает в себя:

  • Барабан;
  • Колодки;
  • Двухпоршневой рабочий цилиндр;
  • Щит;
  • Стяжные пружины.

Как и в случае с дисковым механизмом, у барабанного имеются две фрикционные составляющие, между которыми возникает трение при торможении. Здесь их роль выполняют барабан и две колодки, выполненных в виде полумесяца.

Барабан является подвижным элементом, он располагается на оси и вращается вместе с колесом. Неподвижным же элементом является щит с закрепленными на нем рабочим цилиндром (вверху) и опорой колодок (внизу).

Колодки (с фрикционными накладками) размещены так, что своими вершинами упираются в поршни цилиндра и опору.

Удерживают их в таком положении за счет стяжных пружин (вверху и внизу) и прижимов. Все элементы, располагающиеся на щите, получаются помещенными внутрь барабана, то есть они закрыты им.

Работает все очень просто: при нажатии на педаль, поршни выходят из цилиндра, и преодолевая усилие пружин, разводят колодки.

Это перемещение приводит к тому, что колодки начинают прижиматься к внутренней поверхности (рабочей) барабана, что и обеспечивает его замедление вращения.

При отпускании педали, пружины возвращают колодки в исходное положение.

Как уже отмечено, каждый из применяемых типов механизмов имеет свои достоинства и недостатки.

К положительным качествам дисковых механизмов относится:

  • Высокая эффективность;
  • Меньшее время на срабатывание;
  • За счет открытой конструкции обеспечивается вентиляция (механизм лучше охлаждается, а также отводятся продукты износа);
  • Быстрое удаление влаги;
  • Легкость разборки при обслуживании и ремонте.

Но вместе с тем, такие механизмы изнашиваются быстрее, поэтому их обслуживание, с заменой расходных материалов, нужно проводить чаще.

Открытая конструкция имеет и негативные стороны.

Во-первых, между колодкой и диском попадает больше сторонних частиц, что увеличивает скорость износа.

Во-вторых, влаге значительно проще попасть на рабочие элементы. При этом, если диск будет сильно разогрет, высока вероятность его коробления.

Также такие механизмы сложно использовать как элементы стояночной системы.

Что касается барабанных механизмов, то к их достоинствам относятся:

  • Большой ресурс без надобности замены расходных материалов;
  • Рабочие элементы защищены от попадания сторонних частиц (они закрыты);
  • Высокая устойчивость барабана к резким перепадам температур;
  • Возможность использования в качестве элемента стояночного тормоза (именно из-за этого очень часто такие механизмы используют на задних колесах).

Но такие тормоза менее эффективны, существует вероятность их отказа при сильном нагреве, обладают более сложной конструкцией, что осложняется ремонт.

К тому же, разрушение пружин или самих колодок может привести к заклиниванию механизма.

Принцип работы стояночного тормоза

Как и в рабочей системе, стояночный тормоз состоит из двух составляющих – привода и исполнительного механизма.

Зачастую в стояночном тормозе используется механический тип привода, который обладает простотой конструкции и надежность.

В качестве исполнительных механизмов обычно используются барабанные тормоза, для чего в их конструкцию добавлены специальные рычаги.

Весь привод состоит из храпового механизма, установленного в салоне связанного с тросом, тянущимся под автомобилем к тормозным механизмам, где он соединяется с рычагами.

Принцип работы очень прост: поднимая рычаг в салоне, водитель задействует храповой механизм, исключающий самовольное опускание ручника.

В результате этого действия, водитель тянет трос, а тот в свою очередь обеспечивает перемещение рычага, который разводит колодки, прижимая их к барабану.

Для растормаживания водитель нажимает клавишу на рычаге, тем самым выводя из зацепления собачку из храпового механизма. Это позволяет опустить рычаг и привести весь механизм в исходное положение.

Недостатком такого привода ручного тормоза является надобность в периодическом регулирования натяжения троса. Также трос со временем может перепреть, и его придется менять.

В современных системах ручного тормоза применяются электрические приводы. Причем некоторые из них даже используются в качестве исполнительного механизма дисковые тормоза.

Также такой тип стояночного тормоза может блокировать не колеса, а трансмиссию.

Суть такого типа привода сводится к тому, что в рабочие механизмы устанавливаются электродвигатели, которые и воздействуют на колодки.

Но такие приводы считаются конструктивно сложными, что значительно повышает вероятность их поломки. Поэтому они пока не получили широкого распространения.

Многие автопроизводители продолжают отдавать предпочтение простому и дешевому тросовому ручному тормозу.

Диагностика тормозной системы

Для диагностирования общей эффективности тормозной системы зачастую применяются специальные стенды.

Наибольшее распространение получили барабанные стенды, позволяющие определить усилие, создаваемое тормозной системой на каждом колесе и время срабатывания системы.

Затем исходя из показаний, производится обслуживание и ремонт.

Народные методы диагностики тормозов.

Одним из таких методов является замер тормозного пути. Именно этот метод положен в основу площадочного стенда.

Суть метода сводиться к движению авто с определенной скоростью по ровной площадке с последующим экстренным торможением.

После этого замеряется тормозной путь и на основе замеров и сравнения их с номинальным значением, указанным в тех. документации к авто, определяется эффективность тормозов.

К примеру, на ВАЗ 2109 в полностью загруженном состоянии тормозной путь на сухой ровной поверхности при скорости 80 км/ч должен составлять примерно 38 м.

Значение меньше или таковое указывает на отличную работу тормозов, большее значение сигнализирует о проблемах в работе.

Недостатком этого метода является невозможность определения эффективности работы тормозов на каждом колесе и время срабатывания привода.

Также на показания в значительной мере влияют дорожные условия при проведении диагностики (мокрая поверхность дороги или сухая и т.д.).

Уход за тормозной системой автомобиля

Тормозная система играет одну из основных ролей в обеспечении безопасности при движении на автомобиле.

Поэтому в обязательном порядке необходимо следить за ее состоянием и своевременно проводить техническое обслуживание.

Поскольку что в рабочем, что в стояночном тормозе составных элементов немного, то уход за всей системой не очень сложен.

В перечень работ по обслуживанию входит:

  • Контроль уровня рабочей жидкости в бачке; для удаления воздуха из системы;
  • Замена изношенных колодок;
  • Проверка и регулировка ручника.

Помимо этого, также периодически следует осматривать состояние гидравлических магистралей, особенно их резиновых частей.

Что касается дисков и барабанов, то они тоже изнашиваются, но очень медленно, поэтому замене они подлежат очень редко, если, конечно, диск не покоробило от перепада температур.

Особенности ремонта элементов тормозной системы.

Следует отметить, что ремонт тормозов авто не является особо дорогостоящим, если он не оборудован дополнительно вспомогательными системами.

А вот если имеется та же АБС, да еще включающая в себя несколько систем (антиблокировка колес и система экстренного торможения) и на премиальном авто, к примеру, любой из современных Ауди, неисправности именно с этими системами могут обойтись очень дорого.

Какой бы тормозной системой не оснащался автомобиль, она требует постоянного контроля работоспособности, а также обслуживания и ремонта, поскольку это значительно влияет на безопасность движения.

Без определенных знаний все выше перечисленное сделать сложно, поэтому мы надеемся, что после прочтения данной статьи вы начали хоть немного разобраться в этих вопросах.

Источник https://1gai.ru/baza-znaniy/vajno-znat/519132-kak-rabotayut-tormoza-v-avtomobile-obyasnenie.html

Источник https://www.kolesa.ru/article/ot-pedali-do-kolesa-chto-vliyaet-na-effektivnost-tormozov

Источник https://autotopik.ru/obuchenie/811-tormoznaya-sistema-avtomobilya.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: